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Comparison of Landsat 7 and 8 bands with Sentinel-2
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Land Monitoring (2017 vs 2018)
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Source: https://gisgeography.com/synthetic-aperture-radar-examples/
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Before dam breach (2018-07-13) ~ After dam breach (2018-07-25)
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Abstract: In this paper, we present the optical image simulation from synthetic aperture radar (SAR)
data using deep learning based methods. Two models, i.e., optical image simulation directly from
the SAR data and from multi-temporal SAR-optical data, are proposed to testify the possibilities.
The deep learning based methods that we chose to achieve the models are a convolutional neural
network (CNN) with a residual architecture and a conditional generative adversarial network (cGAN).
We validate our models using the Sentinel-1 and -2 datasets. The experiments demonstrate that the
model with multi-temporal SAR-optical data can successfully simulate the optical image; meanwhile,
the state-of-the-art model with simple SAR data as input failed. The optical image simulation results
indicate the possibility of SAR-optical information blending for the subsequent applications such
as large-scale cloud removal, and optical data temporal super-resolution. We also investigate the
sensitivity of the proposed models against the training samples, and reveal possible future directions.

Keywords: Sentinel; synthetic aperture radar; optical; data simulation; convolutional neural network;
generative adversarial network



THE SENTINEL-2 CLOUDLESS LAYER COMBINES OVER 80 TRILLION PIXELS COLLECTED DURING DIFFERING
WEATHER CONDITIONS BETWEEN MAY 2016 AND APRIL 2017. IMAGE: ESA.

Aim: Use with high-temp. resolution even if cloudy
Method: Multi-source (S, O) data fusion

Q: Can we use SAR data to predict optical images?
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Figure 1. Illustration of two optical simulation tasks.
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Figure 3. The flowchart of the cGAN architecture.
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Table 1. Sensing time of optical and SAR image pairs used in the experiments.

Y-M-D S1 O1 S2 02

Iraq 12 November 2017 10 November 2017 6 December 2017 10 December 2017
Jianghan 14 November 2017 12 November 2017 20 December 2017 19 December 2017
Xiangyang 14 November 2017 12 November 2017 20 December 2017 19 December 2017

I RIS

- ianghan | Xiangyang

Figure 5. O2 images of Iraq, Jianghan and Xiangyang pairs. The training patches are selected from the
red rectangle and the test patches are from the blue area.



lTraining patch pair 1Training patch pair

Table 2. The training and test Patches provided by the images.

Iraq Jianghan Xiangyang

Train 561 1188 754
Test 99 165 None

Training patch pairY

1Training patch set

Y Test patch set

Figure 6. Illustration of training and test patch pairs with Iraq dataset for (a) Task A, and (b) Task B.



Table 3. The evaluation values of PSNR, SSIM, MSA and training time of different methods in Case 1.

Index pix2pix CNN ¢GAN MTCNN MTcGAN baseline
PSNR (dB) 2650 2660  26.79 30.61 i 3232 i 2977
SSIM 0.6419 0.6477 0.6519 09028 i 0.9110 : 0.8528
MSA 0.6545 0.6769 0.6581 03796 i 03146 : 0.5529
Training Time (s) 4252 3747 4025 3506 3892 None

Test patches from Jianghan image (influence of different training sets):
Table 4. Simulation accuracy of MTCNN and MTcGAN with different training samples in Case 2.

Method Index Jianghan Iraq  Xiangyang Mixed O1

PSNR 35.08 29.44 34.30 34.38 34.01
MTCNN  SSIM 0.9508 0.8585 0.9412 0.9479  0.9401
MSA 0.4684 0.8400 0.5138 0.4774  0.5319

PSNR 35.25 31.09 34.44 34.83 34.01
MTcGAN  SSIM 0.9509 0.8850 0.9413 0.9463 0.9401
MSA 0.4629 0.6137 0.5070 0.4649 0.5319

PSNR (peak signal to noise ratio), SSIM (structural similarity), MSA (mean spectral angle)



MTCNN
AR 4

Figure 7. Simulated images of different methods in Case 1, companied with the input images (52 and O1)
and output reference image (O2).



MTCNN

MTcGAN

Figure 8. Simulated images of different methods in Case 2. The input images (51, S2 and O1) and

output reference image (O2) on the left side, and simulated images with different training samples on
the right side.



Conclusions

 Multi-temporal data fusion based optical image generation works

e Adversarial networks are useful and effective

However:
e Simulated images (O2) in changing parts (S1 -> S2) are blurred

e Selection of training samples has an impact on outcome

* More time-steps could help create more stable results



PSNR is most easily defined via the mean squared error (MSE). Given a noise-free mxn monochrome image / and its noisy approximation
K, MSE is defined as:

1 ™= 1n— 1
MSE = — - K(i,5))*
mmn 1=0 ]=O
The PSNR (in dB) is defined as:
2 - - .
PSNR = 10 - log,, (J‘Xf;;f) PSNR: peak signal to noise ratio
( MAX; )
= 20 -log;p | ——
vV MSE

Here, MAX,is the maximum possible pixel value of the image. When the pixels are represented using 8 bits per sample, this is 255. More
generally, when samples are represented using linear PCM with B bits per sample, MAX; is 2B-1.

The SSIM index is calculated on various windows of an image. The measure between two windows x and y of common size NxN is:[4l
(210 py + €1)(200y + c2)
(uz + p§ + c1)(0F + 0y + c2)

SSIM(z,y) =

with:
e u, the average of z;
* 1y the average of 4 SSIM: structural similarity
e o2 the variance of z;
e o2 the variance of y;
* o, the covariance of z and y;
o ¢;=(k1 L)%, co=(koL)? two variables to stabilize the division with weak denominator;

L the dynamic range of the pixel-values (typically this is 2#bits per pizel _1);
k1=0.01 and k,=0.03 by default. Source: Wlklped|a



MSA: mean spectral angle

180 (Z% arccos( 0, 27 (xi, t,v)Z (i £v)/\/ S0, 2206, 6,) S, 220, v)))

MSA =
m N

Source: Yin et al., 2017, Int J Rem Sens



